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Abstract

This paper shows that the Hough transform, a basic technique of image processing, is useful for separating stresses from heterogeneous fault-

slip data. The present method enumerates admissible stresses by evaluating their probability for a heterogeneous dataset. Using the results of the

method applied to artificial data with known responsible stresses, it is argued that the criterion that has been generally used to judge the resolution

and accuracy of a numerical technique for the separation is not appropriate. The result reveals the limitation of stress inversion based on the

Wallace–Bott hypothesis. No matter how good an inverse method is, it sometimes inevitably yields unexpected stresses even from artificial data if

the data have heterogeneity.
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1. Introduction

Fault-slip data are called heterogeneous if the faults within

the dataset were activated by multiple stress conditions. Given

homogeneous data, it is straightforward to determine the

responsible stress using mathematical inversion (Carey and

Brunier, 1974; Angelier, 1979). Therefore, faults are often

classified at outcrops by their apparent relative ages in order to

divide the heterogeneous data into homogeneous subsets (e.g.

Angelier et al., 1985; Bergerat, 1987; Choi et al., 2001;

Vandycke and Bergerat, 2001). However, such fault classifi-

cation is not always possible.

Accordingly, several researchers have attempted to develop

computer-based methods for separating stresses from hetero-

geneous fault-slip data (Etchecopar et al., 1981; Armijo et al.,

1982; Huang, 1988; Galindo-Zaldı́var and González-Lodeiro,

1988; Angelier, 1994). Since the mid-1990s, numerical

techniques developed in information engineering have been

applied to this problem. Nemcok and Lisle (1995) adopted

hierarchical clustering (e.g. Duda et al., 2001) to divide fault-

slip data into homogeneous subsets. Shan et al. (2003, 2004)

employed non-hierarchical clustering for fault sorting based on

the s-space proposed by Fry (1999).
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This paper has two purposes. The first purpose is to present a

new method to separate stresses from heterogeneous fault-slip

data. The method utilizes the Hough transform, a technique of

image processing (e.g. Leavers, 1992). The technique is briefly

introduced in Appendix A.

The second aim of this article is more important. The

methodological studies on this problem often use artificial data

sets that are generated with known stresses for testing methods.

Other testing datasets were prepared by combining natural

datasets, each of which resulted from a single tectonic event

(e.g. Liesa and Lisle, 2004). A good numerical technique is

expected to detect only the assumed stresses. If unexpected

stresses are obtained, they are regarded as spurious solutions

and the employed method is judged unsuccessful.

Based on the geometrical interpretation of stress tensor

inversion by Fry (2001) and Sato and Yamaji (2006a), it is

shown in this paper that it is often inevitable that unexpected

solutions are obtained among expected ones from artificial

heterogeneous data. We argue that the criterion that has been

used to judge the performance of a numerical technique in

separating stresses from heterogeneous data is not appropriate.

This is the second aim of this paper.
2. Method

The method that we propose in this article is an extension of

the Ginkgo method (Yamaji, 2003). The improvement has been

enabled by a geometrical formulation of the stress tensor

inversion problem (Sato and Yamaji, 2006a) and by
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the derivation of a computational grid with uniform spacing

(Sato and Yamaji, 2006b). Our method, which is an adaptation

of the Hough transform to paleostress analysis, visualizes the

object function of the inverse method by Angelier (1979).
Fig. 1. (a) Examples of fitness criterion, r(d). (b) Fitness criterion used in this

article.
2.1. Stress inversion and the Hough transform

The fitness of a stress to a fault-slip datum is evaluated

in this article using d, the angular misfit between the

observed and theoretical slip directions of the fault. Given

the orientation of a fault surface and a reduced stress tensor,

s, the theoretical slip direction on the surface by the stress

can be calculated with the Wallace–Bott hypothesis

(Wallace, 1951; Bott, 1959). Namely, the slip direction of

the fault, the surface of which is perpendicular to the unit

vector ðn, is given by ððn$sðnÞðnKsðn. Therefore, d is a

function of the orientation and the tensor. It is highly

improbable that the stress tensor was responsible for the

movement of a fault with a large d. Such a fault is said to

be incompatible with the stress. We also use r(d), a

symmetric function, i.e. r(Kd)Zr(d), with a unique

maximum at dZ0. Choi et al. (1996) called r(d) a fitness

criterion. The optimal stress for a dataset is determined by

maximizing the function

MðsÞZ
1

N

XN

kZ1

rðdðk;sÞÞ (1)

where N is the number of data, d(k,s) is the misfit angle of

the kth fault for the trial tensor s.

The specific form of r(d) is arbitrary. The ordinary least-

squares regression uses r(d)fd2, which implicitly expects the

residuals dð1; ŝÞ;.; dðN; ŝÞ for the optimal stress ŝ to obey

Gaussian statistics. Such a robust statistical approach, which

was introduced by the discussion between Fry (1992) and Will

and Powell (1991, 1992), is suitable for obtaining the best-fit

tensor for non-Gaussian data, because the technique suppresses

the contamination of the optimal solution by outliers. However,

the optimal solution is often spurious for heterogeneous data

(Fig. 10a). The purpose of this study is not to determine the

single tensor but to separate multiple tensors from a

heterogeneous dataset.

M(s) in Eq. (1) is called an M-estimator (Rousseeuw and

Leroy, 1986) and can make the inversion numerically robust

for non-Gaussian residuals by choosing an appropriate function

r(d). The following functions have been used for stress

inversion (Angelier, 1977, 1979, 1984):

ðcosjdjC1Þ=2 (2)

1Ksinðjdj=2Þ (3)

1Ktan2jdj if 0% jdj%458

0 otherwise

(
(4)
1Ktanjdj if 0% jdj %458

0 otherwise

(
(5)

Fig. 1a shows the graphs of these functions. The choice of a

form does not have a significant effect upon the optimal stress

if homogeneous data are processed. Heterogeneity of data

vitiates the solutions that are obtained with Eqs. (2) or (3)

because the graphs of those functions have long tails. The

summation in Eq. (1) involves fault-slip data that are

incompatible with a test tensor s. In contrast, the tails of

Eqs. (4) and (5) are cut off at dZ458 not to spoil the optimal

stress by suppressing the contribution of the incompatible data

to the summation. The stress inversion with such an elaborate

function is robust to the heterogeneity and can determine the

most significant stress for the heterogeneous data (Angelier,

1984). We evaluate the fitness of s to a fault-slip datum with d

and r(d). For simplification of the following arguments, we use

the function

rðd; TÞZ
1Kjdj=T if 0% jdj %T

0 otherwise

(
(6)

where the semicolon in the left-hand side of Eq. (6) separates

the different kinds of arguments: d depends entirely on

tectonics, but T is an index of the method. Comparing

Fig. 1a and b, it is obvious that r(d; 458) is an approximation

of Eqs. (4) and (5). Likewise, r(d; 1808) approximates Eqs. (2)

and (3).

In order to see what happens by combining Eqs. (1) and (6),

let us study the relationship between the Hough transform and

stress inversion. Suppose that we have N data points on the xy-

plane and that the pair (x(k), y(k)) indicates the coordinates of the

kth point. Then, the Hough transform of the points is given by

the equation

Hða; bÞZ
1

N

XN

kZ1

d axðkÞ CbKyðkÞ
� �

(7)



Fig. 2. Schematic illustration showing the topography of FððxÞ (thin line) and the
procedure to detect its peaks. Open circles are computational grid points with

uniform intervals on the five-dimensional unit sphere produced by Sato and

Yamaji (2006b). Stress tensors with maximal FððxÞ are represented by the peaks
of the topography, which can be detected by climbing the steps that are

quantized from the topography. The grid points are also used as the initial

positions of the ‘climbers,’ which have the field of view of a radius of 238.
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where

dðtÞZ
1 if t Z 0

0 otherwise

(
(8)

is a function of an arbitrary scalar variable t. The argument of

this d-function in Eq. (7), ax(k)CbKy(k), comes from Eq. (A.1).

Consequently, H(a, b) has non-zero values only along lines on

the ab-plane that correspond to the data points (x(k), y(k))

(Fig. 10b).

Note that the peak of the function r in Fig. 1b narrows with

decreasing jTj, but its height is kept constant. The relationship

between the Hough transform and stress inversion turns out

from the equivalence

lim
T/0

rðt; TÞZ dðtÞ

where r is the fitness criterion defined by Eq. (6). This equation

allows us to rewrite Eq. (7) as limT/0 H(a, b; T), where

Hða; b; TÞZ
1

N

XN

kZ1

r axðkÞ CbKyðkÞ; T
� �

When the Hough transform is employed for detecting lines, the

results become numerically stable and robust to noise by

casting votes not only to accumulation cells immediately under

the lines but also to cells around the lines in the ab-plane (Thrift

and Dunn, 1983). Such casting is indicated by H(a, b; T) with

TO0. As a result, a zone with a half width of T receives votes.

Fig. 10c shows the 3D surface plot of H(a, b; 0.1) for the data

points in Fig. 10a. The surface has the prominent peaks

corresponding to the two lines along which the data points are

aligned. Increasing T amalgamates small peaks and ridges of

the surface. At the same time, the two prominent peaks spread

their bases. The peaks are eventually merged. Fig. 10d shows

the surface H(a, b; 1). This surface has a single peak near the

point that corresponds to the line A. As T becomes larger, r(d;

T) approaches the L1-estimator, meaning that the inversion

maximizes the sum of the absolute values of residuals

(Rousseeuw and Leroy, 1986).

The above arguments demonstrate that M(s) is comparable

with the Hough transform of fault-slip data. M(s) has a peak

every time s has one or more compatible fault-slip data.

Namely, the match of each fault-slip datum to various reduced

tensors is represented by a spike in M(s), although M(s) is
defined by the summation of r for the entire fault-slip data.

Accordingly, significant stresses are separable as the prominent

peaks of M(s). If a homogeneous dataset is given, M(s) has the
only maximum at the stress responsible for the faults from

which the data are obtained. We choose a value of TZ458 for

the fitness criterion to approximate Eq. (5) to find out the

reduced stress tensors that simultaneously match several fault-

slip data.
2.2. Detection of peaks upon the five-dimensional hypersphere

Points upon the unit hypersphere in the five-dimensional

space have one-to-one correspondence with reduced stress
tensors and the Euclidean distance between points on the

hypersphere equals Orife and Lisle’s (2003) stress difference

between the tensors corresponding to the points (Sato and

Yamaji, 2006a). Accordingly, we regard M(s) in the same light

as MððxÞ, where ðx is a unit vector with its initial point at the

origin of the five-dimensional space (Appendix B). Because of

the inequality M(s)R0, the values of the function

FððxÞZMððxÞC1 (9)

are always greater than or equal to 1, and represent a surface

out of or tangent to the hypersphere. The peaks of this surface

depicts the extremes of M(s), which further correspond to the

responsible stresses for heterogeneous fault-slip data.

Fig. 2 illustrates the procedure to detect the peaks of the

surface FððxÞ in the five-dimensional space. Sato and Yamaji

(2006b) distribute 60,000 points with uniform intervals on the

unit hypersphere to furnish computational grid points to stress

tensor inversion. First, we evaluate the function FððxÞ at the

points. Second, the F value of a grid point is compared with the

values at its neighbouring grid points. If the value is the

greatest among those of its neighbours, a peak is identified at

the grid point. In this study, the neighbour is defined as the grid

points within a Euclidean distance of 0.4 in the parameter

space, which corresponds to a stress difference (Orife and

Lisle, 2003) of the same value (Sato and Yamaji, 2006a). The

angular distance between two points on the hypersphere is

calculated from the Euclidean distance between the points. The

chord with the length of 0.4 subtends the arc with a length of

2 tanK1(0.4/2)z238. If two peaks exist within this angular

distance, the lower peak is ignored. For example, the distance

between peaks A and B in Fig. 2 is greater than this threshold

distance. So, our procedure can recognize both peaks A and B,

but peak C is not separated from peak A.
3. Test

3.1. Artificial data

For testing of the present method, a set of heterogeneous

fault-slip data was generated with two stresses of strike-slip

faulting regimes. The set contains 60 faults with various

orientations. Forty faults were thought of as those activated by

Stress A, which has s1 and s3 orientations of 0358/208 and

1258/008, respectively (Fig. 3a). Twenty faults were assumed to



Fig. 3. Artificial data for testing. Faults activated by Stress A (a) and Stress B

(b) were mixed to form a heterogeneous data set. Both the stresses have a stress

ratio of 0.5. Lower-hemisphere, equal-angle projection.
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be activated by Stress B, where s1 and s3 orientations were

0008/208 and 0908/008, respectively (Fig. 3b). Both the stresses

had the stress ratio Fh(s2Ks3)/(s1Ks3)Z0.5, where we use

the sign convention that compression is positive. The angular

distance between the s1 orientations is 338 and the stress

difference (Orife and Lisle, 2003) between the stresses is 1.10.

A heterogeneous data set was made by the concatenation of

those fault-slip data.
Fig. 4. Paired stereonets showing the result of the present method applied to the ar

orientations, respectively. Closed circles are plotted at the principal orientations of

proportional to the height of the peaks. Diamonds indicate the principal orientation

Lower-hemisphere, equal-angle projection.
3.2. Result

The present method was applied to the heterogeneous data

set. Five peaks were detected and the corresponding solutions

were labelled as Stresses I–V (Fig. 4). Parameters of the

stresses are listed in Table 1. Both Stresses A and B were

successfully detected as the first and second highest peaks,

which correspond to Stresses I and II. The principal

orientations of these stresses were rotated from the assumed

ones by 1–48, because our computational grid points have

intervals of a few degrees. The stress ratios of I and II were

approximately equal to the assumed value of 0.5.

However, three unexpected solutions (Stresses III–V) were

also obtained. Fault sorting by the present method was good but

imperfect. The column headed m in Table 1 indicates the

number of faults with d!208. If a fault has a small d, the fault is

said to match the stress. This is a key to fault sorting. Several

values in the range from 10 to 308 have been used for the misfit

threshold (e.g. Etchecopar et al., 1981; Casas et al., 1990;

Nemcok and Lisle, 1995; Ramsay and Lisle, 2000). We use 208

here but the choice of the value does not affect the conclusions

of this paper, if it is in the range.

Fig. 5 shows the fault sorting based on Stresses I and II. The

faults activated by Stress A were completely classified to be so,

but three of those by Stress B were mixed in this class. The

faults activated by Stress B were correctly related to Stress II

except for one fault, because the fault was nearly parallel to the

assumed s1-axis. This reflects the instability of d for the faults

that are nearly parallel to principal stress planes (Gephart,

1990). Among the faults that should have been related to Stress

I, six faults were compatible with Stress II.
3.3. Comparison with other methods

The present technique is an extension of the Ginkgo method

(Yamaji, 2003). The difference is in the techniques for

identifying the peaks of the object function M(s). The Ginkgo
tificial fault-slip data (Fig. 3). The left and right stereonets show the s1 and s3
Stresses I–V, which correspond to the peaks of FððxÞ. Diameter of the circles is

s used for production of the test data. Stresses III–V are unexpected solutions.



Table 1

Five stresses detected by the present method from the heterogeneous fault-slip

data shown in Fig. 3. The second and third columns in this table show the

azimuth/plunge of s1 and s3 orientations, respectively. Further explanation in

text

s1 s3 F FððxÞ m

Stress I 034/17 124/01 0.52 1.675 43

Stress II 002/17 271/04 0.50 1.400 25

Stress III 033/67 190/22 0.72 1.155 10

Stress IV 196/72 018/18 0.62 1.109 8

Stress V 290/18 191/24 0.62 1.083 6
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method visualizes the peaks on paired stereograms. The

resolution of the new technique is decisively better than the

original method. Specifically, it was difficult for the Ginkgo

method to detect Stress B, the second significant stress.

The Ginkgo method has a mechanism, similar to the right-

dihedra method (Angelier and Mechler, 1977). The latter can

discriminate a few stresses on a stereonet, if their principal

orientations are clearly separated. The Ginkgo method also

uses stereonets on which the principal orientations and stress

ratios are distinguished by eye. However, the reduced stress

tensors to be discriminated are entities in the five-dimensional

parameter space. The method projects them onto a stereonet on

a 2D plane for visualization. The shadows of the projection are

superimposed many times so that the discrimination of

significant stresses on the stereonet is difficult (Lisle and

Vandycke, 1996).

In contrast, the peaks of FððxÞ are enumerated by the present

method within the five-dimensional parameter space. Therefore,

the peaks and corresponding stresses can be clearly separated.

On the other hand, the multiple inverse (MI) method

(version 5) (Yamaji, 2000) separated both the assumed stresses,

though Stress B was not as evident as the result of the present

technique. Significant stresses detected from the data by the MI

method are indicated by clusters on paired stereograms in

Fig. 6a. Each member in the clusters represents a reduced stress

tensor. Therefore, the tensors were classified into two groups

on the five-dimensional unit sphere using the k-means
Fig. 5. Misfit angles (d) of the 60 faults in Fig. 3 for Stresses I and II. Triangles

indicates the faults with small angular misfits (d!208).
clustering by Otsubo et al. (2006) for determining the averages

of the clusters. Fig. 6b shows the result. The representative

stresses determined through this technique for the two clusters

were approximately equal to the assumed ones. The principal

orientations were rotated only by a few degrees. Both the

representative ones had a stress ratio of 0.41.

Although the comparative study of the present and MI

methods is not comprehensive at the moment, we think that

both the methods have shown similar performance in

separating stresses from heterogeneous data sets. However,

the time of computation is different. The computational

complexity of the MI method inflates as N5 or so, but that of

the present method is proportional to N. Therefore, the present

method usually spends a much shorter time than the MI method

in computation.

4. Unexpected solutions

The tangent-lineation diagrams in Fig. 7 illustrate why the

unexpected solutions appeared. They show the match or

mismatch of each fault-slip datum to the detected stresses.

White thin arrows in the diagrams indicate the theoretical slip

directions of the footwall blocks, the fault planes of which are

perpendicular to the orientations designated by the positions of

the arrows on the stereonets (Twiss and Moores, 1992). The

patterns made by the arrows have one-to-one correspondence

with reduced stress tensors. Therefore, the separation of stresses

from heterogeneous fault-slip data involves finding the patterns

thatmatch data. Therefore, the present technique is an application

of patternmatching. The fact is that detection of objects using the

Hough transform is equivalent to template or pattern matching

technique (Stockman and Agrawala, 1977). Consequently,

several thick arrows match thin white arrows by chance in

Fig. 7c–e. Unexpected stresses reflect such coincidences.

Those solutions are comparable with the accumulation cells

that got fewer votes than the significant two peaks in Fig. 10c.

We judged that those cells corresponded to spurious

alignments because we knew the correct solutions. Can we

judge the unexpected stresses spurious?

Stresses III–V were regarded as unexpected solutions

because they were neither of the assumed stresses. However,

we do not know correct ones when we deal with natural data.

Accordingly, there would be no reason to reject these three

stresses, when they are obtained from natural heterogeneous

data. The Wallace–Bott hypothesis places loose constraints on

this problem.

These observations encourage us to abandon the criterion

that has been often employed to judge the resolution and

accuracy of a method in separating stresses from hetero-

geneous fault-slip data. Namely, methods are judged unsuc-

cessful if they yield unexpected solutions. Instead, all we can

do is to enumerate stresses matching or compatible with parts

of the data. Good methods for this problem should do this. The

present method fills this demand.

The present method satisfactorily detected the two tested

stresses as prominent peaks. However, three unexpected

stresses also appeared. In addition, fault sorting based on



Fig. 6. (a) Result of the multiple inverse method applied to the artificial data in Fig. 3. Fault combination number (k) and enhance factor (e) are 5 and 6, respectively.

See Yamaji (2000) for details of these parameters. Each square plotted on the stereograms represent a reduced stress tensor, the stress ratio of which is indicated by a

grey scale. Lower-hemisphere, equal-area projection. (b) Result of automatic clustering of the reduced stress tensors indicated in (a) using the technique of Otsubo

et al. (2006). Crosses indicate the representative principal orientations of the clusters. Diamonds depict the principal orientations of the assumed stresses for the data.

Fig. 7. Tangent-lineation diagrams showing the matches of the artificial fault-slip data (Fig. 3) to the faulting patterns (white thin arrows) produced by Stresses I–V.

Thick arrows indicate the data. The data with d!208 are denoted by thick white arrows edged with black. Those with dO208 are shown by thick solid arrows.
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the detected stresses was not perfect. In the next section, the

limitation of stress tensor inversion is discussed using me

geometrical formulation by Sato and Yamaji (2006a).
5. Heterogeneous data in the parameter space

In this section, we consider how heterogeneous fault-slip

data are expressed in the high dimensional parameter space and

show the inevitability of obtaining ‘unexpected’ solutions from

those data sets. The following argument is entirely based on the

theory by Sato and Yamaji (2006a), who embed Orife and

Lisle’s (2003) stress difference as a metric in the parameter

space proposed by Fry (2001). Data points on the physical

space (xy-plane) correspond to lines in the parameter space (ab-

plane) in the detection of lines (Appendix A). Then, what kind

of figure in the five-dimensional parameter space does

correspond to a fault-slip datum?

Points on the unit hypersphere can represent both fault-slip

data and reduced stress tensors (Sato andYamaji, 2006a).A fault-

slip datum is indicated by the paired unit vectors ð3 and ð3 0 in the
five-dimensional parameter space (AppendixB). The points P,Q,

R and S in Fig. 8 are on the hypersphere and the rays OR and OS

are parallel to ð3 and ð3 0, respectively. The reduced stress tensors

that are indicated by the points along the great circle arc PRQ in

the figure cause slips with a null deviation angle (dZ0) on the

fault plane that has the paired unit vectors. An analytical equation

for the tensorswas derived byMcKenzie (1969). Sato andYamaji

(2006a) demonstrate that a stress tensor indicated by a vector ðx
results in the misfit angle
Fig. 8. Schematic illustration showing the unit hypersphere centred at point O

in the five-dimensional parameter space. The rays OR and OS are parallel to the

unit vectors ð3 and ð3 0, respectively, which are perpendicular to each other. The

admissible reduced stress tensors for the datum are represented by the points

along the great circle perpendicular to ð3 0 and on the hyper-hemisphere

containing point R. The line PQ is defined to be perpendicular to the vectors.

There are three orientations perpendicular to the vectors in this five-

dimensional space. However, they are represented by the single line PQ for

illustration purposes. The ridge along the great circle arc PRQ depicts the

topography of FððxÞ for the case of the function p(d) in Eq. (6). The ridge has the

maximum width of 2T at point R, but narrows toward its ends at P and Q. The

height of the ridge is constant along the great circle arc PRQ.
d Z tanK1 jð3
0$ðxj

ð3$ðx

where 0%d%1808. Namely, d equals the angle between ð3 and the
vector that is the shadowof the orthogonal projectionof ðx onto the
plane spanned by the paired vectors.

Combining Eqs. (1) and (9), we obtain

FððxÞZ
1

N

XN

kZ1

rðdðk; ðxÞÞC1 (10)

This is the superposition of the undulations corresponding to

fault-slip data. The topography for a single datum is

represented by

FððxÞZ
rðdðk; ðxÞÞ

N
C1

This is designated by the ridge along the arc (Fig. 8).

Analogous to the shape of the graph in Fig. 1b, the ridge has

triangular cross-sections. Its width has a maximum of 2T at

point R and narrows towards both ends. The ridge has an arc

length of 1808 (Fry, 2001). There are three lines perpendicular

to the vectors ð3 and ð3 0 in the five-dimensional space. Therefore,

there are actually three ridges that meet at right angles at the

point R. Eq. (10) denotes the Hough transform of fault-slip

data. The local maxima of FððxÞ appear at the loci where ridges
meet on the hypersphere.

If the entire fault-slip data match to the only one reduced

stress, the ridges cross each other at the point that corresponds

to the stress. Heterogeneous data are represented by ridges that

meet at multiple points. The global maximum of FððxÞ
represents the most probable stress for the data. Every local

maximum is a possible solution and their heights designate the

probability of the corresponding stresses for the data.

The local maxima appear at the loci where ridges meet.

Fig. 9 shows a ‘Mercator chart’ of those ridges on
Fig. 9. Analogue of ‘Mercator chart’ showing the topography FððxÞ for the

heterogeneous fault-slip data that are generated with two stress tensors.

Diamonds designate the stresses. The value of FððxÞ is indicated by a grey scale.
A single fault-slip datum is represented by a worm-like pattern, the axis of

which corresponds to the arc PRQ in Fig. 8. There are local maxima that appear

where the patterns cross each other. Those loci manifest themselves as

‘unexpected’ solutions in the result of stress tensor inversion.
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the five-dimensional hypersphere projected onto a four-

dimensional hyperplane. The chart is an analogue of the

Hough transform in Fig. 10c. A ridge is schematically

illustrated in the chart as a sinusoidal long grey zone looking

like a striped worm, both ends of which correspond to points P

and Q in Fig. 8. The line PQ represents three lines that are

perpendicular to the couple of vectors ð3 and ð3 0. Therefore, a
starfish with three pairs of arms, which meet at right angles at

point R, is actually a more suitable simile than a ‘worm.’

However, there is no way to draw the three pairs, so the ‘worm’

is intended to represent one of the pairs. The local maxima

appear where the ‘worms’ lie one on the other.

All sinusoidal ‘worms’ in the chart have an arc length of

1808, long enough to allow them to overlap by chance.

Therefore, when we generate artificial data with heterogeneity,

it is not surprising if the ridges not only meet at the loci

corresponding to the assumed stresses but also meet at other

places. Those crossings give rise to ‘unexpected’ stresses.

Unexpected stresses determined from heterogeneous fault-

slip data are not always spurious solutions for stress tensor

inversion.
6. Summary

A numerical technique based on the Hough transform is

presented. The present method enumerates the possible
Fig. 10. Detection of lines using the Hough transform. (a) Data points indicated by cl

shows the line determined by the ordinary least-square regression. (b) Grey lines sho

points A and B. The two points represents the two lines in (a). Surfaces showing H(a,

The prominent peaks correspond to lines A and B in (a), but there are many other
reduced stress tensors for given heterogeneous fault-slip data

and evaluates the probability of the tensors.

There is no reason to reject the possible stress tensors if we

deal with natural data. Any method often yields unexpected

stresses from artificial data if they have heterogeneity. The

appearance of those stresses is not a sign of the defect of a

method. In this respect, the criterion for judging the

performance of the method for separating stresses from

heterogeneous data should be changed. Stress tensor inversion

based on the Wallace–Bott hypothesis constrains or enumer-

ates possible stresses that are compatible with the parts of

heterogeneous data.
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Appendix A. Hough transform

The Hough transform is a technique for identifying the

locations and orientations of certain types of features in a

digital image. The transform explains the mechanics of our

method for detecting reduced stress tensors from hetero-

geneous data. Instead of the locations and orientations, we are
osed circles on the xy-plane. The points make up two lines A and B. Dashed line

wing the Hough transform of the points in (a). The lines meet at or near the two

b) for the data points for the cases of TZ0.1 and 1.0, respectively, in (c) and (d).

peaks and ridges in (c).
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determining the shapes and orientations of stress ellipsoids

compatible for the data.

Suppose that we have n data points that lie on plural lines on

the xy-plane (Fig. 10a). Linear regression can determine the

best-fit line for all the points, but the line in this case is

meaningless. In contrast, the Hough transform can detect the

lines. The simplest form in which to express a line on the plane

is

y Z axCb (A.1)

If the n points from (x(1), y(1)) through (x(n), y(n)) are co-

linear, all these couples of x and y satisfy Eq. (A.1) with the

same a and b. The ab-plane is the parameter space for the

detection of lines. The xy- and ab-planes have duality: every

point on the ab-plane corresponds to a line on the xy-plane and

every point on the xy-plane corresponds to the line

b ZKaxCy (A.2)

on the ab-plane. This line is the Hough transform of the point

(x,y). The line denoted by Eq. (A.2) has the slope Kx and the

intercept y. Therefore, the lines indicating the Hough transform

of the n points meet at the same point on the ab-plane

(Fig. 10b). Therefore, the detection of a line on the xy-plane

results in the detection of a point on the ab-plane where

multiple tines meet. The next problem is to detect those points

on the ab-plane.

The ab-plane is subdivided into ‘accumulation cells,’ which

represent different lines on the xy-plane. The Hough transform

works by letting each data point on the xy-plane ‘vote’ to the

cells that corresponds to the lines passing through the data

point. In consequence, the cells with the maximum number of

votes represent the linear patterns that are made up of the points

in the xy-plane. In this way, the line detection reduces to an

optimization problem, i.e. the search for the cells that have got

the maximum votes.

The Hough transform is useful for detecting multiple lines.

The cell with the global maximum corresponds to the line

along which the maximum number of data points are aligned,

but a local maximum indicates another possible alignment.

There are two lines in Fig. 10a: lines A and B consist of 7 and 5

points, respectively. Corresponding to the lines, the Hough

transform of the points intersect at or near the two points A and

B on the ab-plane (Fig. 10b). More lines meet around point A

than point B, because line A has more points than line B.

However, there are problems in this technique. There are

always local maxima other than the significant ones in the

parameter space and most local maxima are spurious.

Accordingly, the peaks standing out from others should be

identified. In addition, measurement errors or noise disperse

the data points on the xy-plane and further scatter the

intersection points in the parameter space. The number of

votes is, therefore, affected by the noise. A noise reduction

technique is usually required for the Hough transform (Hunt

et al., 1990). A simple way for stabilizing the voting is carried

out by casting votes not only to the cells along the line denoted

by Eq. (A.2) but also to the cells in a zone along the line (Thrift

and Dunn, 1983). One more modification for the stabilization is
to replace the parameter space. For this example, the equation

x cos qCy sin qZr is another expression of a line on the xy-

plane. It is known that r and q constitute a better parameter

space than a and b (Duda and Hart, 1972). The choice and

discretization of parameter space are important.
Appendix B. Unit vectors in the five-dimensional parameter

space

The five-dimensional unit vector denoting a reduced stress

tensor sZ(sij) has the components
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The tensor is assumed here to be deviatoric:
s11 Cs22 Cs33 Z 0 (B.2)
Accordingly, s has one-to-one correspondence with ðx via

Eqs. (B.1) and (B.2).

On the other hand, a fault-slip datum is represented by the

unit vectors, ðn and ðv, i.e. ðnZ ðn1; n2; n3Þ
T is the fault normal

and ðvZ ðv1; v2; v3Þ
T indicates the slip direction of the hanging-

wall block. We also use the auxiliary unit vector
ðbZ ðb1; b2; b3Þ

TZ ðn!ðv. The datum is represented in the

five-dimensional parameter space by the paired unit vectors
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and

ð3 0 Z
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See Sato and Yamaji (2006a) for further explanations.
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